
Euler’s relation states: 𝑒𝑒𝑖𝑖𝑖𝑖 = cos 𝜃𝜃 + 𝑖𝑖 sin 𝜃𝜃        (𝐼𝐼) 

Replacing 𝜃𝜃 with −𝜃𝜃. Note that 
cos(−𝜃𝜃) = cos (𝜃𝜃) and sin(−𝜃𝜃) = −sin (𝜃𝜃) 

𝑒𝑒−𝑖𝑖𝑖𝑖 = cos(−𝜃𝜃) + 𝑖𝑖 sin(−𝜃𝜃) 
𝑒𝑒−𝑖𝑖𝑖𝑖 = cos(𝜃𝜃) − 𝑖𝑖 sin(𝜃𝜃)       (𝐼𝐼𝐼𝐼) 

Subtracting (𝐼𝐼𝐼𝐼) from (𝐼𝐼): 𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒𝑒−𝑖𝑖𝑖𝑖 = cos 𝜃𝜃 − cos 𝜃𝜃 + 𝑖𝑖 sin 𝜃𝜃 + 𝑖𝑖 sin 𝜃𝜃 
𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒𝑒−𝑖𝑖𝑖𝑖 = 2𝑖𝑖 sin 𝜃𝜃 

Dividing by 2𝑖𝑖 sin 𝜃𝜃 =
1
2𝑖𝑖

(𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒𝑒−𝑖𝑖𝑖𝑖) 

This chapter aims to build upon the complex numbers you learnt in Core Pure 1. We will look at Euler’s formula and De 
Moivre’s theorem; two powerful ideas which will lay the foundation for most of the techniques you will encounter in 
this chapter. Complex numbers themselves have an unexpectedly large number of applications in the real world, such 
as the modelling of quantum waves in Physics to the representation of alternating current in Electrical Engineering.  

Exponential form of complex numbers 
In Core Pure 1, you learnt that the modulus argument form of a complex number 𝑧𝑧 is 𝑧𝑧 = 𝑟𝑟(cos 𝜃𝜃 + 𝑖𝑖 sin 𝜃𝜃), where 
𝑟𝑟 = |𝑧𝑧| and arg 𝑧𝑧 = 𝜃𝜃. You can use Euler’s formula to express a complex number in an exponential form: 

 𝑒𝑒𝑖𝑖𝑖𝑖 = cos 𝜃𝜃 + 𝑖𝑖 sin𝜃𝜃

So the complex number 𝑧𝑧 can also be written as: 

 𝑧𝑧 = 𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖, where 𝑟𝑟 = |𝑧𝑧| and arg 𝑧𝑧 = 𝜃𝜃

This is the exponential form of a complex number. You need to be very comfortable expressing a complex number in 
both exponential and modulus-argument forms. The exponential form will be quite prevalent in this chapter. 

The following results follow from Euler’s formula and are worth remembering: 

 sin𝜃𝜃 = 1
2𝑖𝑖

(𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒𝑒−𝑖𝑖𝑖𝑖) 

These results are significant because they give us a direct connection between complex numbers and the 
trigonometric functions. You could be asked to prove these. The proof of the first statement is given in Example 2, and 
the proof for the second is very similar. 

Example 1: Express the complex number 𝑧𝑧 = √2 �cos 𝜋𝜋
2

+ 𝑖𝑖 sin 𝜋𝜋
2
� in the form 𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖.

Example 2: Use Euler’s relation to show that sin𝜃𝜃 = 1
2𝑖𝑖

(𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒𝑒−𝑖𝑖𝑖𝑖).  

Multiplying and dividing complex numbers 
Recall from Core Pure 1 that for any two complex numbers 𝑧𝑧1, 𝑧𝑧2: 

 |𝑧𝑧1𝑧𝑧2| = |𝑧𝑧1||𝑧𝑧2| 

 arg(𝑧𝑧1𝑧𝑧2) = arg(𝑧𝑧1) + arg (𝑧𝑧2) 

We can deduce similar results for when complex numbers are given in an exponential form: 

If 𝑧𝑧1 = 𝑟𝑟1𝑒𝑒𝑖𝑖𝑖𝑖1 and 𝑧𝑧2 = 𝑟𝑟2𝑒𝑒𝑖𝑖𝑖𝑖2, then: 

 𝑧𝑧1𝑧𝑧2 = 𝑟𝑟1𝑟𝑟2𝑒𝑒𝑖𝑖(𝑖𝑖1+𝑖𝑖2) 

 𝑧𝑧1
𝑧𝑧2

= 𝑟𝑟1
𝑟𝑟2
𝑒𝑒𝑖𝑖(𝑖𝑖1−𝑖𝑖2) 

Example 3: Express                                     in the form 𝑥𝑥 + 𝑖𝑖𝑖𝑖, where 𝑥𝑥, 𝑖𝑖 ∈ ℝ. 

De Moivre’s theorem 
You can use De Moivre’s theorem to calculate powers of complex numbers: 

 (𝑟𝑟(cos𝜃𝜃 + 𝑖𝑖 sin𝜃𝜃))𝑛𝑛 = 𝑟𝑟𝑛𝑛(cos(𝑛𝑛𝜃𝜃) + 𝑖𝑖 sin(𝑛𝑛𝜃𝜃))

If we consider the exponential form, this result seems more obvious: 

 �𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖�𝑛𝑛 = 𝑟𝑟𝑛𝑛𝑒𝑒𝑖𝑖(𝑛𝑛𝑖𝑖) 

This formula allows you to easily simplify some seemingly complicated expressions, like the one in Example 4. 

𝑧𝑧1𝑧𝑧2 = 𝑟𝑟1𝑟𝑟2𝑒𝑒𝑖𝑖(𝑖𝑖1+𝑖𝑖2)

 

Complex Numbers Cheat Sheet 

arg(𝑧𝑧1𝑧𝑧2) = arg(𝑧𝑧1) + arg (𝑧𝑧2) 

|𝑧𝑧1𝑧𝑧2| = |𝑧𝑧1||𝑧𝑧2| 

Example 4: Evaluate   giving your answer in the form 𝑥𝑥 + 𝑖𝑖𝑖𝑖, where 𝑥𝑥,𝑖𝑖 ∈ ℝ. 

Trigonometric identities 
You can also be expected to use De Moivre’s theorem to derive trigonometric identities. The following results are 
important for such problems: 

If 𝑧𝑧 = cos 𝜃𝜃 + 𝑖𝑖 sin𝜃𝜃, then 

 𝑧𝑧𝑛𝑛 + 1
𝑧𝑧𝑛𝑛

= 2 cos𝑛𝑛𝜃𝜃 

 𝑧𝑧𝑛𝑛 − 1
𝑧𝑧𝑛𝑛

= 2𝑖𝑖 sin𝑛𝑛𝜃𝜃 

You could be asked to prove any of the above results. Examples 5 shows how you can use these results to prove 
trigonometric identities. 

Example 5: Express 𝑐𝑐𝑐𝑐𝑐𝑐5𝜃𝜃 in the form a cos(5𝜃𝜃) + 𝑏𝑏 cos(3𝜃𝜃) + 𝑐𝑐 cos(𝜃𝜃), where 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 are constants. 

Sums of complex series 
Recall from Chapter 3 of Pure Year 2 that for a geometric series: 

 The sum of the first 𝑛𝑛 terms is given by  𝑆𝑆𝑛𝑛 = 𝑎𝑎(1−𝑟𝑟𝑛𝑛)
1−𝑟𝑟

. 

 The sum to infinity is given by 𝑆𝑆∞ = 𝑎𝑎
1−𝑟𝑟

. 

You can also use these results when 𝑎𝑎 and 𝑟𝑟 are complex. Questions involving series will often require a lot of algebraic 
manipulation to achieve the final result.  

Example 6: The series 𝑃𝑃 and 𝑄𝑄 are defined for 0 < 𝜃𝜃 < 𝜋𝜋 as  

Show that 𝑃𝑃 + 𝑖𝑖𝑄𝑄 =
𝑒𝑒6𝑖𝑖𝑖𝑖�𝑒𝑒

13𝑖𝑖𝑖𝑖
2 −𝑒𝑒−

13𝑖𝑖𝑖𝑖
2 �

2𝑖𝑖 sin�𝑖𝑖2�

nth roots of a complex number 
Finding the n roots of a complex number 𝑤𝑤 is equivalent to solving the equation 𝑧𝑧𝑛𝑛 = 𝑤𝑤. 

 The equation 𝑧𝑧𝑛𝑛 = 𝑤𝑤 has 𝑛𝑛 distinct solutions (𝑧𝑧 and 𝑤𝑤 are non-zero complex numbers, 𝑛𝑛 is a positive 
integer). 

We use De Moivre’s theorem to find the roots of a complex number, along with the following fact: 

 𝑧𝑧 = 𝑟𝑟(cos(𝜃𝜃) + 𝑖𝑖 sin(𝜃𝜃)) = 𝑟𝑟(cos(𝜃𝜃 + 2𝑘𝑘𝜋𝜋) + 𝑖𝑖 sin(𝜃𝜃 + 2𝑘𝑘𝜋𝜋)), where 𝑘𝑘 is any integer. 

To solve an equation of the form 𝑧𝑧𝑛𝑛 = 𝑤𝑤, you should follow the process used in Example 7 below: 

Example 7: Solve the equation 𝑧𝑧4 + 2𝑖𝑖√3 = 2, expressing the roots in the form 𝑟𝑟(cos 𝜃𝜃 + 𝑖𝑖 sin𝜃𝜃). 

Solving geometric problems 
The roots of a complex number when plotted on an argand diagram form a polygon. You can use this idea to solve 
geometric problems. 

 The n roots of a complex number 𝑧𝑧 lie at the vertices of a regular 𝑛𝑛-gon which has its centre at O. 

For example, the solutions to the equation 𝑧𝑧4 = 2 + 𝑖𝑖 are the vertices of a square with centre 𝑂𝑂. We will now look at the 
roots of unity, which are useful for geometric problems: 

 An 𝑛𝑛th root of unity is a solution to the equation 𝑧𝑧𝑛𝑛 = 1. 

 If you know one root of a complex number with 𝑛𝑛 roots, then you can find the other roots by multiplying by 
an nth root of unity. 

 An nth root of unity is given by 𝜔𝜔 = 𝑒𝑒
2𝜋𝜋𝑖𝑖
𝑛𝑛 . For example, if a complex number has four roots then a ‘fourth’ 

root of unity is given by 𝜔𝜔 = 𝑒𝑒
2𝜋𝜋𝑖𝑖
4 .

Example 8: The point 𝑃𝑃(√3, 1) lies at one vertex of an equilateral triangle. The centre of the triangle lies at the origin. 
Find the coordinates of the other vertices of the triangle. 

�
𝑧𝑧1
𝑧𝑧2
� =

|𝑧𝑧1|
|𝑧𝑧2| 

arg �
𝑧𝑧1
𝑧𝑧2
� = arg (𝑧𝑧1) − arg (𝑧𝑧2) 

(𝑐𝑐𝑐𝑐𝑐𝑐 7𝜋𝜋
13 + 𝑖𝑖𝑐𝑐𝑖𝑖𝑛𝑛 7𝜋𝜋

13)4

(𝑐𝑐𝑐𝑐𝑐𝑐 4𝜋𝜋
13 + 𝑖𝑖𝑐𝑐𝑖𝑖𝑛𝑛 4𝜋𝜋

13)6

Use De Moivre’s theorem with the numerator: (cos
7𝜋𝜋
13

+ 𝑖𝑖 sin
7𝜋𝜋
13

)4 = cos
28𝜋𝜋
13

+ 𝑖𝑖 sin
28𝜋𝜋
13

Use De Moivre’s theorem with the denominator: (cos
4𝜋𝜋
13

+ 𝑖𝑖 sin
4𝜋𝜋
13

)6 = cos
24𝜋𝜋
13

+ 𝑖𝑖 sin
24𝜋𝜋
13

So, the whole fraction simplifies to: 
cos 28𝜋𝜋

13 + 𝑖𝑖 sin 28𝜋𝜋
13

cos 24𝜋𝜋
13 + 𝑖𝑖 sin 24𝜋𝜋

13

We can simplify this using the rule for dividing complex numbers: 
we divide the magnitudes and subtract the arguments. 

= cos �
28𝜋𝜋
13

−
24𝜋𝜋
13

� + 𝑖𝑖 sin(
28𝜋𝜋
13

−
24𝜋𝜋
13

) 

= cos �
4𝜋𝜋
13
� + 𝑖𝑖 sin �

4𝜋𝜋
13
� 

√5𝑒𝑒𝑖𝑖𝑖𝑖 × 3𝑒𝑒3𝑖𝑖𝑖𝑖

The modulus of the resultant complex number is found by 
multiplying each modulus. 

|𝑧𝑧| = √5, |𝑧𝑧| = 3 
  |𝑧𝑧1𝑧𝑧2| = 3√5 

The argument of the resultant complex number is found by 
adding the arguments together 

arg 𝑧𝑧1 = 𝜃𝜃 , arg 𝑧𝑧2 = 3𝜃𝜃 
arg(𝑧𝑧1𝑧𝑧2) = 4𝜃𝜃 

Using the modulus argument form to write the resultant 
complex number in the form 𝑥𝑥 + 𝑖𝑖𝑖𝑖: 

∴ 𝑧𝑧1𝑧𝑧2 = 3√5(cos(4𝜃𝜃) + 𝑖𝑖𝑐𝑐𝑖𝑖𝑛𝑛(4𝜃𝜃)) 
= 3√5 cos(4𝜃𝜃) + 𝑖𝑖(3√5)𝑐𝑐𝑖𝑖𝑛𝑛(4𝜃𝜃) 

 

𝑧𝑧𝑛𝑛 = cos(𝑛𝑛𝜃𝜃) + 𝑖𝑖 sin(𝑛𝑛𝜃𝜃)     (𝐼𝐼) 
𝑧𝑧−𝑛𝑛 = 1

𝑧𝑧𝑛𝑛
= cos(−𝑛𝑛𝜃𝜃) + 𝑖𝑖 sin(−𝑛𝑛𝜃𝜃) = cos(𝑛𝑛𝜃𝜃) − 𝑖𝑖 sin(𝑛𝑛𝜃𝜃)     (𝐼𝐼𝐼𝐼) 

Adding (𝐼𝐼) and (𝐼𝐼𝐼𝐼) gives: 

𝑧𝑧𝑛𝑛 +
1
𝑧𝑧𝑛𝑛

= 2cos(𝑛𝑛𝜃𝜃) 

To prove the second statement, we would instead subtract (𝐼𝐼𝐼𝐼) from (𝐼𝐼). 

Edexcel Core Pure 2 

We use the given form to figure out the 
modulus and argument of 𝑧𝑧 

|𝑧𝑧| = √2, arg 𝑧𝑧 =
𝜋𝜋
2

Now using the exponential form ∴ 𝑧𝑧 = √2𝑒𝑒
𝑖𝑖𝜋𝜋
2  

Using 𝑧𝑧𝑛𝑛 + 1
𝑧𝑧𝑛𝑛

= 2 cos𝑛𝑛𝜃𝜃 with 𝑛𝑛 = 1: 𝑧𝑧 +
1
𝑧𝑧

= 2 cos 𝜃𝜃 

Raising both sides to the fifth power: �𝑧𝑧 +
1
𝑧𝑧
�
5

= 32cos5𝜃𝜃 

We now focus on the 𝐿𝐿𝐿𝐿𝑆𝑆 and expand using 
the binomial expansion: �𝑧𝑧 +

1
𝑧𝑧
�
5

= 𝑧𝑧5 + 5(𝑧𝑧4) �
1
𝑧𝑧
� + 10(𝑧𝑧3) �

1
𝑧𝑧2
� + 10(𝑧𝑧2) �

1
𝑧𝑧3
� + 5(𝑧𝑧) �

1
𝑧𝑧4
� +

1
𝑧𝑧5

We can pair up the terms that match in 
power: �𝑧𝑧 +

1
𝑧𝑧
�
5

= �𝑧𝑧5 +
1
𝑧𝑧5
� + 5 �𝑧𝑧3 +

1
𝑧𝑧3
� + 10 �𝑧𝑧 +

1
𝑧𝑧
� 

These terms can all be simplified using: 

𝑧𝑧𝑛𝑛 +
1
𝑧𝑧𝑛𝑛

= 2𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝜃𝜃 �𝑧𝑧 +
1
𝑧𝑧
�
5

= 2 cos(5𝜃𝜃) + 5(2 cos(3𝜃𝜃)) + 10(2 cos(𝜃𝜃)) 

= 2 cos(5𝜃𝜃) + 10 cos(3𝜃𝜃) + 20 cos(𝜃𝜃) 

But from the second step we said that  

�𝑧𝑧 + 1
𝑧𝑧
�
5

= 32𝑐𝑐𝑐𝑐𝑐𝑐5𝜃𝜃, so we can say that:
32 cos5 𝜃𝜃  = 2 cos(5𝜃𝜃) + 10 cos(3𝜃𝜃) + 20 cos(𝜃𝜃) 

Dividing both sides by 32: cos5 𝜃𝜃 =
1

16
cos(5𝜃𝜃) +

5
16

cos(3𝜃𝜃) +
5
8

cos(𝜃𝜃) 

𝑧𝑧1
𝑧𝑧2

=
𝑟𝑟1
𝑟𝑟2
𝑒𝑒𝑖𝑖(𝑖𝑖1−𝑖𝑖2) 

Notice that the result we want to show has 2𝑖𝑖 sin �𝑖𝑖
2
� in the 

denominator. And recall that sin 𝜃𝜃 = 1
2𝑖𝑖
�𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑒𝑒−𝑖𝑖𝑖𝑖�, 𝑐𝑐𝑐𝑐 

2𝑖𝑖 sin �𝑖𝑖
2
� = 𝑒𝑒

𝑖𝑖𝑖𝑖
2 − 𝑒𝑒

−𝑖𝑖𝑖𝑖
2   So if we multiply the top and bottom by

𝑒𝑒−
𝑖𝑖𝑖𝑖
2 , we get 𝑒𝑒

−𝑖𝑖𝑖𝑖
2 − 𝑒𝑒

𝑖𝑖𝑖𝑖
2  on the bottom, which is equal to

−2𝑖𝑖 sin �𝑖𝑖
2
� 

=
𝑒𝑒
−𝑖𝑖𝑖𝑖
2 𝑒𝑒

13𝑖𝑖𝑖𝑖
2 (𝑒𝑒

−13𝑖𝑖𝑖𝑖
2 − 𝑒𝑒

13𝑖𝑖𝑖𝑖
2 )

𝑒𝑒
−𝑖𝑖𝑖𝑖
2 (1 − 𝑒𝑒𝑖𝑖𝑖𝑖)

=
𝑒𝑒6𝑖𝑖𝑖𝑖(𝑒𝑒

−13𝑖𝑖𝑖𝑖
2 − 𝑒𝑒

13𝑖𝑖𝑖𝑖
2 )

𝑒𝑒
−𝑖𝑖𝑖𝑖
2 − 𝑒𝑒

𝑖𝑖𝑖𝑖
2

The denominator is now equal to −2𝑖𝑖 sin �𝑖𝑖
2
�. Multiplying the top 

and bottom by −1 gives us the required result. 
∴ 𝑃𝑃 + 𝑖𝑖𝑄𝑄 =

𝑒𝑒6𝑖𝑖𝑖𝑖(𝑒𝑒
−13𝑖𝑖𝑖𝑖
2 − 𝑒𝑒

13𝑖𝑖𝑖𝑖
2 )

−2𝑖𝑖 sin �𝜃𝜃2�
=
𝑒𝑒6𝑖𝑖𝑖𝑖(𝑒𝑒

13𝑖𝑖𝑖𝑖
2 − 𝑒𝑒

−13𝑖𝑖𝑖𝑖
2 )

2𝑖𝑖 sin �𝜃𝜃2�

We start by making 𝑧𝑧4 the subject: 𝑧𝑧4 = 2 − 𝑖𝑖(2√3)  
Writing in modulus-argument form: 
(we could also use the exponential form) 𝑧𝑧4 = 4(cos �−

𝜋𝜋
3
� + 𝑖𝑖 sin �−

𝜋𝜋
3
�) 

Taking the fourth root of both sides: 𝑧𝑧 = 4
1
4 �cos �−

𝜋𝜋
3
� + 𝑖𝑖 sin �−

𝜋𝜋
3
��

1
4

But remember that if we add on any multiple of 2𝜋𝜋 to the 
argument, this will also be a solution, so we add 2𝑘𝑘𝜋𝜋 to the 
argument. Make sure to do this BEFORE you use De Moivre’s 
theorem, which is the next step. 

𝑧𝑧 = √2 �cos �−
𝜋𝜋
3

+ 2𝑘𝑘𝜋𝜋� + 𝑖𝑖 sin �−
𝜋𝜋
3

+ 2𝑘𝑘𝜋𝜋��
1
4

Simplifying the argument into one fraction makes further 
working slightly easier: 

𝑧𝑧 = √2 �cos �
−𝜋𝜋 + 6𝑘𝑘𝜋𝜋

3
� + 𝑖𝑖 sin �

−𝜋𝜋 + 6𝑘𝑘𝜋𝜋
3

��
1
4

Now applying De Moivre’s theorem: 𝑧𝑧 = √2 �cos �
−𝜋𝜋 + 6𝑘𝑘𝜋𝜋

12
� + 𝑖𝑖 sin �

−𝜋𝜋 + 6𝑘𝑘𝜋𝜋
12

�� 

There are four solutions in total. We use different values of 𝑘𝑘 
that result in the argument being in the range 
−𝜋𝜋 < 𝜃𝜃 ≤ 𝜋𝜋

𝑘𝑘 = 0: 𝑧𝑧 = √2 (cos �−
𝜋𝜋

12
� + 𝑖𝑖 sin �−

𝜋𝜋
12
�) 

𝑘𝑘 = 1: 𝑧𝑧 = �2(cos �
5𝜋𝜋
12
� + 𝑖𝑖 sin �

5𝜋𝜋
12
�) 

𝑘𝑘 = 2: 𝑧𝑧 = �2(cos �
11𝜋𝜋
12

� + 𝑖𝑖 sin �
11𝜋𝜋
12

�) 

𝑘𝑘 = −1: 𝑧𝑧 = √2 (cos �−
7𝜋𝜋
12
� + 𝑖𝑖 sin �−

7𝜋𝜋
12
�) 

𝑃𝑃 = 1 + cos 𝜃𝜃 + cos 2𝜃𝜃 + cos 3𝜃𝜃 + ⋯+ cos 12𝜃𝜃 + ⋯ 
𝑄𝑄 = sin𝜃𝜃 + sin 2𝜃𝜃 + sin 3𝜃𝜃 + ⋯+ sin 12𝜃𝜃 + ⋯ 

Adding 𝑃𝑃 to 𝑖𝑖𝑄𝑄, we can see that we are dealing with a geometric 
series.  

𝑃𝑃 + 𝑖𝑖𝑄𝑄 = 1 + (cos 𝜃𝜃 + 𝑖𝑖 sin𝜃𝜃)
+ (cos 2𝜃𝜃 + 𝑖𝑖 sin 2𝜃𝜃) + ⋯ 

We can use the previous line to figure out what 𝑎𝑎 and 𝑟𝑟 are for this 
geometric series. Using the exponential form where possible will 
make any manipulation a lot easier. 

So 𝑎𝑎 = 1, 𝑟𝑟 = cos 𝜃𝜃 + 𝑖𝑖 sin𝜃𝜃 = 𝑒𝑒𝑖𝑖𝑖𝑖 

There are 13 terms in total (since the first term is 1), so using the 
sum of a geometric series formula with 𝑛𝑛 = 13:  𝑃𝑃 + 𝑖𝑖𝑄𝑄 =

1(1 − (𝑒𝑒𝑖𝑖𝑖𝑖)13)
1 − 𝑒𝑒−𝑖𝑖𝑖𝑖

=
1 − 𝑒𝑒13𝑖𝑖𝑖𝑖

1 − 𝑒𝑒𝑖𝑖𝑖𝑖

We can rewrite 1 − 𝑒𝑒13𝑖𝑖𝑖𝑖 as 𝑒𝑒
13𝑖𝑖𝑖𝑖
2 (𝑒𝑒

−13𝑖𝑖𝑖𝑖
2 − 𝑒𝑒

13𝑖𝑖𝑖𝑖
2 ) 

This is a common trick you often need to use for series questions. =
𝑒𝑒
13𝑖𝑖𝑖𝑖
2 (𝑒𝑒

−13𝑖𝑖𝑖𝑖
2 − 𝑒𝑒

13𝑖𝑖𝑖𝑖
2 )

1 − 𝑒𝑒𝑖𝑖𝑖𝑖

This is an equilateral triangle, so the three vertices represent the three 
roots of a complex number. We are given one root: 

One root is 𝑧𝑧 = √3 + 𝑖𝑖 

In exponential form: 𝑧𝑧 = 2𝑒𝑒
𝑖𝑖𝜋𝜋
6  

To find the other roots, we need to multiply by an 𝑛𝑛th root of unity. 
There are three roots here, so we call it a cube root of unity: Cube root of unity = 𝑒𝑒

2𝜋𝜋𝑖𝑖
3  

We multiply the original root by the root of unity two successive times to 
find the other two roots. Remember that the roots correspond to the 
vertices. 

𝑧𝑧 = 2𝑒𝑒
𝑖𝑖𝜋𝜋
6 × 𝑒𝑒

2𝜋𝜋𝑖𝑖
3 = 2𝑒𝑒

5𝜋𝜋𝑖𝑖
6 = −√3 + 𝑖𝑖

𝑧𝑧 = 2𝑒𝑒
5𝜋𝜋𝑖𝑖
6 × 𝑒𝑒

2𝜋𝜋𝑖𝑖
3 = 2𝑒𝑒

9𝜋𝜋𝑖𝑖
6 = −2𝑖𝑖 

We write our answers as coordinates: �−√3, 1� and (0,−2) are our vertices. 

 

 

Proof: 

(continues)   

 cos 𝜃𝜃 = 1
2

(𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑒𝑒−𝑖𝑖𝑖𝑖) 
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