Complex Numbers Cheat Sheet

This chapter aims to build upon the complex numbers you learnt in Core Pure 1 . We will look at Euler's formula and De
Moivre's theorem; two powerful ideas which will lay the foundation for most of the techniques you will encounter in Moive's theorem; two powerful ideas which will lay the foundation for most of the techniques you will encounter in
this chapter. Complex numbers themselves have an unexpectedly large number of applications in the real world, such as the modelling of quantum waves in Physics to the representation of alternating current in Electrical Engineering.
xponential form of complex numbers
Core Pure 1 , you learnt that the modyus argument form of a complex number z is $z=r(\cos \theta+i \sin \theta)$, wher
$=|z|$ and $\arg z=\theta$. You can use Euler's formula to express a complex number in an exponential form

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

So the complex number z can also be written as:

$$
z=r e^{i \theta} \text {, where } r=|z| \text { and } \arg z=\theta
$$

This is the exponential form of a complex number. You need to be very comfortable expressing a complex number in both exponential and modulus-argument forms. The exponential form will be quite prevalent in this chapter
The following results follow from Euler's formula and are worth remembering:

$$
\sin \theta=\frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right) \quad \cdot \quad \cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)
$$

These results are significant because they give us a direct connection between complex numbers and the rigonometric functions. You could be asked to prove these. The proof of the first statement is given in Example 2 , and the proof for the second is very similar.

Example 1: Express the complex number $z=\sqrt{2}\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$ in the form $r e$

$$
\begin{aligned}
& \begin{array}{l}
\text { We use the eiven form to figure out the } \\
\text { modulus and a ryument of } z
\end{array}||z|=\sqrt{2}, \quad \arg z= \\
& \begin{array}{l|l}
\begin{array}{l}
\text { modulus and argument of } z \\
\text { Now using the exponential form }
\end{array} \therefore z=\sqrt{2} e^{\frac{i \pi}{2}}
\end{array}
\end{aligned}
$$

Example 2: Use Euler's relation to show that $\sin \theta=\frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right)$

Euler's relation states:	$e^{i \theta}=\cos \theta+i \sin \theta \quad$ (l)
Replacing θ with $-\theta$. Note that $\cos (-\theta)=\cos (\theta)$ and $\sin (-\theta)=-\sin (\theta)$	$\begin{aligned} & e^{-i \theta}=\cos (-\theta)+i \sin (-\theta) \\ & e^{-i \theta}=\cos (\theta)-i \sin (\theta) \quad \text { (II) } \end{aligned}$
Subtracting (II) from (I):	$\begin{aligned} & e^{i \theta}-e^{-i-1}=\cos \theta-\cos \theta+i \sin \theta+i \sin \theta \\ & e^{i \theta}-e^{-1 \theta}=2 \sin \theta \end{aligned}$
Dividing by $2 i$	$\sin \theta=\frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right)$

Multitylying and dividing complex numbers
$\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$

$\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$
$\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$
can deduce similar results for when complex numbers are given in an exponential form
$Z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i z_{2}}$, then
$z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}$
$\frac{Z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}$
Example 3: Express $\sqrt{5} e^{i \theta} \times 3 e^{3 i \theta}$ in the form $x+i y$, where $x, y \in \mathbb{R}$.

The modulus of the resultant complex number is found by multiplying each modulus.	$\begin{aligned} & \|z\|=\sqrt{5},\|z\|=3 \\ & \left\|z_{1} z_{2}\right\|=3 \sqrt{5} \end{aligned}$
The argument of the resultant complex number is found by adding the arguments together	$\begin{aligned} & \arg Z_{1}=\theta, \arg z_{2}=3 \theta \\ & \arg \left(z_{1} z_{2}\right)=4 \theta \end{aligned}$
Using the modulus argument form to write the resultant complex number in the form $x+i y$:	$\begin{aligned} & \therefore z_{1} z_{2}=3 \sqrt{5}(\cos (4 \theta)+i \sin (4 \theta)) \\ & =3 \sqrt{5} \cos (4 \theta)+i(3 \sqrt{5}) \sin (4 \theta) \end{aligned}$

De Moivre's theorem

- $\quad(r(\cos \theta+i \sin \theta))^{n}=r^{n}(\cos (n \theta)+i \sin (n \theta))$
$\left(r e^{i \theta}\right)^{n}=r^{n} e^{i(n \theta)}$
rmula allows you to easily simplify some seemingly complicated expressions, like the one in Example

Example 4: Evaluate $\frac{\left(\cos \frac{7 \pi}{13}+i \sin \frac{7 \pi}{13}\right)^{4}}{\left(\cos \frac{4 \pi}{13}+i \sin \frac{4 \pi}{13}\right)^{6}} \quad$ giving your answer in the form $x+i y$, where $x, y \in \mathbb{R}$

Use De Moive's theorem with the numerator:	$\left(\cos \frac{7 \pi}{13}+i \sin \frac{7 \pi}{13}\right)^{4}=\cos \frac{28 \pi}{13}+i \sin \frac{28 \pi}{13}$
Use De Moivre's theorem with the denominator:	$\left(\cos \frac{4 \pi}{13}+i \sin \frac{4 \pi}{13}\right)^{6}=\cos \frac{24 \pi}{13}+i \sin \frac{24 \pi}{13}$
So, the whole fraction simplifies to:	$\frac{\cos \frac{28 \pi}{13}+i \sin \frac{28 \pi}{13}}{\cos \frac{24 \pi}{13}+i \sin \frac{24 \pi}{13}}$
We can simplify this using the rule for dividing complex numbers: we divide the magnitudes and subtract the arguments.	$\begin{aligned} & =\cos \left(\frac{28 \pi}{13}-\frac{24 \pi}{13}\right)+i \sin \left(\frac{28 \pi}{13}-\frac{24 \pi}{13}\right) \\ & =\cos \left(\frac{4 \pi}{13}\right)+i \sin \left(\frac{4 \pi}{13}\right) \end{aligned}$

Trigonometric identities You can also be expected

you can also be expected to use De Moivre's theorem to derive trigonometric identities. The following results are important for such problems:

You could be asked to prove any of the above results. Examples 5 shows how you can use these results to prove trigonometric identities.

Example 5: Express $\cos ^{5} \theta$ in the form $\operatorname{acos}(5 \theta)+b \cos (3 \theta)+c \cos (\theta)$, where a, b and c are constants

Using $z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$ with $n=1$:	$z+\frac{1}{z}=2 \cos \theta$
Raising both sides to the fifth power:	$\left(z+\frac{1}{z}\right)^{5}=32 \cos ^{5} \theta$
We now focus on the $L H S$ and expand using the binomial expansion:	$\left(z+\frac{1}{z}\right)^{5}=z^{5}+5\left(z^{4}\right)\left(\frac{1}{z}\right)+10\left(z^{3}\right)\left(\frac{1}{z^{2}}\right)+10\left(z^{2}\right)\left(\frac{1}{z^{3}}\right)+5(z)\left(\frac{1}{z^{4}}\right)+\frac{1}{z^{5}}$
We can pair up the terms that match in power:	$\left(z+\frac{1}{z}\right)^{5}=\left(z^{5}+\frac{1}{z^{5}}\right)+5\left(z^{3}+\frac{1}{z^{3}}\right)+10\left(z+\frac{1}{z}\right)$
These terms can all be simplified using: $z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$	$\begin{aligned} & \left(z+\frac{1}{2}\right)^{5}=2 \cos (5 \theta)+5(2 \cos (3 \theta))+10(2 \cos (\theta)) \\ & =2 \cos (5 \theta)+10 \cos (3 \theta)+20 \cos (\theta) \end{aligned}$
But from the second step we said that $\left(z+\frac{1}{z}\right)^{5}=32 \cos s^{5} \theta$, so we can say that:	$32 \cos ^{5} \theta=2 \cos (5 \theta)+10 \cos (3 \theta)+20 \cos (\theta)$
Dividing both sides by 32:	$\cos ^{5} \theta=\frac{1}{16} \cos (5 \theta)+\frac{5}{16} \cos (3 \theta)+\frac{5}{8} \cos (\theta)$

Sums of complex series
Recall from Chapter 3 of Pure Year 2 that for a geometric series:

$$
\text { - The sum of the first } n \text { terms is given by } S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \text {. }
$$

The sum to infinity is given by $S_{\infty}=\frac{a}{a}$.
You can also use these results when a a
manipulation to achieve the final result.
Example 6: The series P and Q are defined for $0<\theta<\pi$ as $P=1+\cos \theta+\cos 2 \theta+\cos 3 \theta+\cdots+\cos 12 \theta+$

Adding P to i i, we can see that we are dealing with a geometric	$P+i Q=1+(\cos \theta+i \sin \theta)$
Series.	

series.
We can u $+(\cos 2 \theta+i \sin 2 \theta)+$ We can use the previous lin to figure out what a and r are for this
geometric series. Using the exponential form where possible will seometric series. Using the exponen
nake any manipulation a oto easier.
There are 13 terms in total (since the first term is 1), so using the
We can rewrite $1-e^{13 i \theta}$ as $e^{\frac{13 i \theta}{2}}\left(e^{-\frac{13 i \theta}{2}}-e^{\frac{13 i \theta}{2}}\right)$

So $a=1, r=\cos \theta+i \sin \theta=e^{i \theta}$ $P+i Q=\frac{1\left(1-\left(e^{i \theta}\right)^{13}\right)}{1-e^{-i \theta}}=\frac{1-e^{13 i \theta}}{1-e^{i \theta}}$ $=\frac{e^{\frac{13 i \theta}{2}}\left(e^{\frac{-13 i \theta}{2}}-e^{\frac{13 i \theta}{2}}\right)}{1}$

Edexcel Core Pure 2

Notice that the result we want to show has $2 i \sin \left(\frac{(\pi}{2}\right)$ in the
 denominator. And recall that $\sin \theta=\frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right)$,so
 2i $\sin \left(\frac{\theta}{2}\right)=e^{\frac{10}{2}-}-e^{\frac{-12}{2}}$ Soif we multiply the top and botom b

 The denominator is now equal to $-2 i$ inin $\left(\frac{\theta}{2}\right)$ and bottom by -1 gives usthe required resit.
 $=\frac{e^{\frac{-i \theta}{2} e^{\frac{13 i \theta}{2}}\left(e^{\frac{-13 i \theta}{2}}-e^{\frac{13 i \theta}{2}}\right)}}{e^{\frac{-i \theta}{2}}\left(1-e^{i \theta}\right)}=\frac{e^{6 i \theta}\left(e^{\frac{-13 i \theta}{2}}-e^{\frac{13 i \theta}{2,}}\right)}{e^{\frac{-i \theta}{2}}-e^{\frac{i \theta}{2}}}$
 $\therefore P+i Q=\frac{e^{6 i \theta}\left(e^{\frac{-13 i \theta}{2}}-e^{\left.\frac{13 i \theta}{2}\right)}\right.}{-2 i \sin \left(\frac{\theta}{2}\right)}=\frac{e^{6 i \theta}\left(e^{\frac{13 i \theta}{2}}-e^{\left.\frac{-13 i \theta}{2}\right)}\right.}{2 i \sin \left(\frac{\theta}{2}\right)}$

nth roots of a complex number
Finding the n roots of a comber w is equivalent to solving the equation $z^{n}=w$.
The equation $z^{n}=w$ has n distinct solutions (z and w are non-zero complex numbers, n is a positive
integer). integer).
We use De Moive's theorem to find the roots of a complex number, along with the following fact:

- $z=r(\cos (\theta)+i \sin (\theta))=r(\cos (\theta+2 k \pi)+i \sin (\theta+2 k \pi))$, where k is any integer To solve an equation of the form $z^{n}=w$, you should follow the process used in Example 7 below:
Example 7 : Solve the equation $z^{4}+2 i \sqrt{3}=2$, expressing the roots in the form $r(\cos \theta+i \sin \theta)$.

start by making z^{4} the subject:	$z^{4}=2-i(2 \sqrt{3})$
Writing in modulus-argument form: (we could also use the exponential form)	$2^{4}=4\left(\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right)$
Taking the fourth root of both sides:	$z=4^{\frac{1}{4}}\left(\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right)^{\frac{1}{4}}$
But remember that if we add on any multiple of 2π to the argument, this will also be a solution, so we add $2 k \pi$ to the theorem, which is the next step.	$z=\sqrt{2}\left(\cos \left(-\frac{\pi}{3}+2 k \pi\right)+i \sin \left(-\frac{\pi}{3}+2 k \pi\right)\right)^{\frac{1}{4}}$
Simplifying the argument into one fraction makes further working slightly easier:	$z=\sqrt{2}\left(\cos \left(\frac{-\pi+6 k \pi}{3}\right)+i \sin \left(\frac{-\pi+6 k \pi}{3}\right)\right)^{\frac{1}{4}}$
Now applying De Moive'stheorem:	$z=\sqrt{2}\left(\cos \left(\frac{-\pi+6 k \pi}{12}\right)+i \sin \left(\frac{-\pi+6 k \pi}{12}\right)\right)$
There are four solutions in total. We use different values of k that result in the argument being in the range $-\pi<\theta \leq \pi$	$\begin{aligned} & k=0: z=\sqrt{2}\left(\cos \left(-\frac{\pi}{12}\right)+i \sin \left(-\frac{\pi}{12}\right)\right) \\ & k=1: z=\sqrt{2}\left(\cos \left(\frac{5 \pi}{12}\right)+i \sin \left(\frac{5 \pi}{12}\right)\right) \\ & k=2: z=\sqrt{2}\left(\cos \left(\frac{11 \pi}{12}\right)+i \sin \left(\frac{11 \pi}{12}\right)\right) \\ & k=-1: z=\sqrt{2}\left(\cos \left(-\frac{7 \pi}{12}\right)+i \sin \left(-\frac{7 \pi}{12}\right)\right) \end{aligned}$

Solving geometric problems

The roots of a complex number when plotted on an argand diagram form a polygon. You can use this idea to solve geometric problems.

For example, the solutions to the equation $z^{4}=2+i$ are the vertices of a square with centre O. We will now look at the roots of unity, which are useful for geometric problems:

- An nth root of unity is a solution to the equation $z^{n}=1$.
- If you know one root of a complex number with n roots, then you can find the other roots by multiplying by an nth root of unity.
- An nth root of unity is given by $\omega=e^{\frac{2 \pi i}{n} \text {. For example, if a complex number has four roots then a 'fourth' }}$ An th root of unity is given by ω
root of unity is given by $\omega=e^{\frac{2 \pi i}{4}}$

Example 8: The point $P(\sqrt{3}, 1)$ lies at one vertex of an equilateral triangle. The centre of the triangle lies at the origin. Find the coordinates of the other vertices of the triangle.

This is an equilateral triangle, so the three vertices represent the three roots of a complex number. We are given one root	One root is $z=\sqrt{3}+i$ In exponential form: $z=2 e^{\frac{i \pi}{6}}$
To find the other roots, we need to multiply by an nth root of unity. There are three roots here, so we call it a cube root of unity	Cube root of unity $=e^{\frac{2 \pi}{3}}$
We multiply the original root by the root of unity two successive times to find the other two roots. Remember that the roots correspond to the	

We multiply the orig inal root by the root of unity two successive times to
find the other two roots. Remember that the roots corcrespond to the tindthe of
vertice
We wite our answers as cordinates

